Structure of Symplectic Lie groups and momentum map

نویسنده

  • Alberto Medina
چکیده

We describe the structure of the Lie groups endowed with a leftinvariant symplectic form, called symplectic Lie groups, in terms of semi-direct products of Lie groups, symplectic reduction and principal bundles with affine fiber. This description is particularly nice if the group is Hamiltonian, that is, if the left canonical action of the group on itself is Hamiltonian. The principal tool used for our description is a canonical affine structure associated with the symplectic form. We also characterize the Hamiltonian symplectic Lie groups among the connected symplectic Lie groups. We specialize our principal results to the cases of simply connected Hamiltonian symplectic nilpotent Lie groups or Frobenius symplectic Lie groups. Finally we pursue the study of the classical affine Lie group as a symplectic Lie group. MSC Classes 53D20,70G65

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Contact and Symplectic Lie Algeroids

In this paper, we will study compatible triples on Lie algebroids. Using a suitable decomposition for a Lie algebroid, we construct an integrable generalized distribution on the base manifold. As a result, the symplectic form on the Lie algebroid induces a symplectic form on each integral submanifold of the distribution. The induced Poisson structure on the base manifold can be represented by m...

متن کامل

ar X iv : m at h / 05 01 09 8 v 1 [ m at h . SG ] 7 J an 2 00 5 The reduced spaces of a symplectic Lie group action

There exist three main approaches to reduction associated to canonical Lie group actions on a symplectic manifold, namely, foliation reduction, introduced by Cartan, Marsden-Weinstein reduction, and optimal reduction, introduced by the authors. When the action is free, proper, and admits a momentum map these three approaches coincide. The goal of this paper is to study the general case of a sym...

متن کامل

Induction of Hamiltonian Poisson actions

We propose a Poisson-Lie analog of the symplectic induction procedure, using an appropriate Poisson generalization of the reduction of symplectic manifolds with symmetry. Having as basic tools the equivariant momentum maps of Poisson actions, the double group of a Poisson-Lie group and the reduction of Poisson manifolds with symmetry, we show how one can induce a Poisson action admitting an equ...

متن کامل

Quasi-hamiltonian Quotients as Disjoint Unions of Symplectic Manifolds

The main result of this paper is Theorem 2.13 which says that the quotient μ({1})/U associated to a quasi-hamiltonian space (M,ω, μ : M → U) has a symplectic structure even when 1 is not a regular value of the momentum map μ. Namely, it is a disjoint union of symplectic manifolds of possibly different dimensions, which generalizes the result of Alekseev, Malkin and Meinrenken in [AMM98]. We ill...

متن کامل

Hamilton-Pontryagin Integrators on Lie Groups Part I: Introduction & Structure-Preserving Properties

In this paper structure-preserving time-integrators for rigid body-type mechanical systems are derived from a discrete Hamilton-Pontryagin variational principle. From this principle one can derive a novel class of variational partitioned Runge-Kutta methods on Lie groups. Included among these integrators are generalizations of symplectic Euler and Störmer-Verlet integrators from flat spaces to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009